The cyclic homology of p-adic reductive groups.
We show that the geometric realization of a cyclic set has a natural, -equivariant, cellular decomposition. As an application, we give another proof of a well-known isomorphism between cyclic homology of a cyclic space and -equivariant Borel homology of its geometric realization.
This work contains an extended version of a course given in Arrangements in Pyrénées. School on hyperplane arrangements and related topics held at Pau (France) in June 2012. In the first part, we recall the computation of the fundamental group of the complement of a line arrangement. In the second part, we deal with characteristic varieties of line arrangements focusing on two aspects: the relationship with the position of the singular points (relative to projective curves of some prescribed degrees)...
The question in the title, first raised by Goldman and Donaldson, was partially answered by Reznikov. We give a complete answer, as follows: if can be realized as both the fundamental group of a closed 3-manifold and of a compact Kähler manifold, then must be finite—and thus belongs to the well-known list of finite subgroups of , acting freely on .