L1-cohomology of normal algebraic surfaces. I.
Let W be a Coxeter group and let μ be an inner product on the group algebra ℝW. We say that μ is admissible if it satisfies the axioms for a Hilbert algebra structure. Any such inner product gives rise to a von Neumann algebra containing ℝW. Using these algebras and the corresponding von Neumann dimensions we define -Betti numbers and an -Euler charactersitic for W. We show that if the Davis complex for W is a generalized homology manifold, then these Betti numbers satisfy a version of Poincaré...
A homology theory of Banach manifolds of a special form, called FSQL-manifolds, is developed, and also a homological degree of FSQL-mappings between FSQL-manifolds is introduced.
We introduce the concept of conserved current variationally associated with locally variational invariant field equations. The invariance of the variation of the corresponding local presentation is a sufficient condition for the current beeing variationally equivalent to a global one. The case of a Chern-Simons theory is worked out and a global current is variationally associated with a Chern-Simons local Lagrangian.