Displaying 441 – 460 of 682

Showing per page

Poincaré - Verdier duality in o-minimal structures

Mário J. Edmundo, Luca Prelli (2010)

Annales de l’institut Fourier

Here we prove a Poincaré - Verdier duality theorem for the o-minimal sheaf cohomology with definably compact supports of definably normal, definably locally compact spaces in an arbitrary o-minimal structure.

Rational BV-algebra in string topology

Yves Félix, Jean-Claude Thomas (2008)

Bulletin de la Société Mathématique de France

Let M be a 1-connected closed manifold of dimension m and L M be the space of free loops on M . M.Chas and D.Sullivan defined a structure of BV-algebra on the singular homology of L M , H * ( L M ; k ) . When the ring of coefficients is a field of characteristic zero, we prove that there exists a BV-algebra structure on the Hochschild cohomology H H * ( C * ( M ) ; C * ( M ) ) which extends the canonical structure of Gerstenhaber algebra. We construct then an isomorphism of BV-algebras between H H * ( C * ( M ) ; C * ( M ) ) and the shifted homology H * + m ( L M ; k ) . We also prove that the...

Rational string topology

Yves Félix, Jean-Claude Thomas, Micheline Vigué-Poirrier (2007)

Journal of the European Mathematical Society

We use the computational power of rational homotopy theory to provide an explicit cochain model for the loop product and the string bracket of a simply connected closed manifold M . We prove that the loop homology of M is isomorphic to the Hochschild cohomology of the cochain algebra C * ( M ) with coefficients in C * ( M ) . Some explicit computations of the loop product and the string bracket are given.

Currently displaying 441 – 460 of 682