Displaying 461 – 480 of 682

Showing per page

Relationship among various Vietoris-type and microsimplicial homology theories

Takuma Imamura (2021)

Archivum Mathematicum

In this paper, we clarify the relationship among the Vietoris-type homology theories and the microsimplicial homology theories, where the latter are nonstandard homology theories defined by M.C. McCord (for topological spaces), T. Korppi (for completely regular topological spaces) and the author (for uniform spaces). We show that McCord’s and our homology are isomorphic for all compact uniform spaces and that Korppi’s and our homology are isomorphic for all fine uniform spaces. Our homology shares...

Retractions onto the Space of Continuous Divergence-free Vector Fields

Philippe Bouafia (2011)

Annales de la faculté des sciences de Toulouse Mathématiques

We prove that there does not exist a uniformly continuous retraction from the space of continuous vector fields onto the subspace of vector fields whose divergence vanishes in the distributional sense. We then generalise this result using the concept of m -charges, introduced by De Pauw, Moonens, and Pfeffer: on any subset X n satisfying a mild geometric condition, there is no uniformly continuous representation operator for m -charges in X .

Second variational derivative of local variational problems and conservation laws

Marcella Palese, Ekkehart Winterroth, E. Garrone (2011)

Archivum Mathematicum

We consider cohomology defined by a system of local Lagrangian and investigate under which conditions the variational Lie derivative of associated local currents is a system of conserved currents. The answer to such a question involves Jacobi equations for the local system. Furthermore, we recall that it was shown by Krupka et al. that the invariance of a closed Helmholtz form of a dynamical form is equivalent with local variationality of the Lie derivative of the dynamical form; we remark that...

Currently displaying 461 – 480 of 682