Displaying 81 – 100 of 130

Showing per page

Polyhedra with virtually polycyclic fundamental groups have finite depth

Danuta Kołodziejczyk (2007)

Fundamenta Mathematicae

The notions of capacity and depth of compacta were introduced by K. Borsuk in the seventies together with some open questions. In a previous paper, in connection with one of them, we proved that there exist polyhedra with polycyclic fundamental groups and infinite capacity, i.e. dominating infinitely many different homotopy types (or equivalently, shapes). In this paper we show that every polyhedron with virtually polycyclic fundamental group has finite depth, i.e., there is a bound on the lengths...

Spaces associated to quadratic endofunctors of the category of groups.

Hans-Joachim Baues, Teimuraz Pirashvili (2005)

Extracta Mathematicae

Square groups are gadgets classifying quadratic endofunctors of the category of groups. Applying such a functor to the Kan simplicial loop group of the 2-dimensional sphere, one obtains a one-connected three-type. We consider the problem of characterization of those three-types X which can be obtained in this way. We solve this problem in some cases, including the case when π2(X) is a finitely generated abelian group. The corresponding stable problem is solved completely.

Spaces of polynomials with roots of bounded multiplicity

M. Guest, A. Kozlowski, K. Yamaguchi (1999)

Fundamenta Mathematicae

We describe an alternative approach to some results of Vassiliev ([Va1]) on spaces of polynomials, by applying the "scanning method" used by Segal ([Se2]) in his investigation of spaces of rational functions. We explain how these two approaches are related by the Smale-Hirsch Principle or the h-Principle of Gromov. We obtain several generalizations, which may be of interest in their own right.

Symplectic groups are N-determined 2-compact groups

Aleš Vavpetič, Antonio Viruel (2006)

Fundamenta Mathematicae

We show that for n ≥ 3 the symplectic group Sp(n) is as a 2-compact group determined up to isomorphism by the isomorphism type of its maximal torus normalizer. This allows us to determine the integral homotopy type of Sp(n) among connected finite loop spaces with maximal torus.

Currently displaying 81 – 100 of 130