The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We prove that the space of nonempty subsets of cardinality at most k in a bouquet of m+1-dimensional spheres is (m+k-2)-connected. This, as shown by Tuffley, implies that the space is (m+k-2)-connected for any m-connected cell complex X.
Myers's classical theorem says that a compact Riemannian manifold with positive Ricci curvature has finite fundamental group. Using Ambrose's compactness criterion or J. Lott's results, M. Fernández-López and E. García-Río showed that the finiteness of the fundamental group remains valid for a compact shrinking Ricci soliton. We give a self-contained proof of this fact by estimating the lengths of shortest geodesic loops in each homotopy class.
The theory of covering spaces is often used to prove the Nielsen-Schreier theorem, which states that every subgroup of a free group is free. We apply the more general theory of semicovering spaces to obtain analogous subgroup theorems for topological groups: Every open subgroup of a free Graev topological group is a free Graev topological group. An open subgroup of a free Markov topological group is a free Markov topological group if and only if it is disconnected.
Currently displaying 1 –
6 of
6