Lannes' T functor on Hopf algebras over the Steenrod algebra with applications to Carlsson modules and twisted algebras.
Les foncteurs entre espaces vectoriels, ou représentations génériques des groupes linéaires d’après Kuhn, interviennent en topologie algébrique et en -théorie comme en théorie des représentations. Nous présentons ici une nouvelle méthode pour aborder les problèmes de finitude et la dimension de Krull dans ce contexte.Plus précisément, nous démontrons que, dans la catégorie des foncteurs entre espaces vectoriels sur , le produit tensoriel entre , où désigne le foncteur projectif , et un foncteur...
We exhibit a six dimensional manifold with a line bundle on it which is not the pullback of a bundle on .
We study secondary obstructions to representing a line bundle as the pull-back of a line bundle on and we interpret them geometrically.
Given a link map f into a manifold of the form Q = N × ℝ, when can it be deformed to an “unlinked” position (in some sense, e.g. where its components map to disjoint ℝ-levels)? Using the language of normal bordism theory as well as the path space approach of Hatcher and Quinn we define obstructions , ε = + or ε = -, which often answer this question completely and which, in addition, turn out to distinguish a great number of different link homotopy classes. In certain cases they even allow a complete...
L'operazione coomologica totale iterata in coomologia ordinaria a coefficienti in ha una sua espressione a seconda della base fissata nell'algebra di Steenrod . Fissato un primo dispari, vengono qui calcolati i coefficienti dell'operazione totale doppia iterata quando si sceglie in la base dei monomi ammissibili. Si fornisce inoltre una dimostrazione alternativa di una versione normalizzata di un teorema di Mùi, ottenuta considerando una particolare successione di funzioni, in analogia al...
Let G be a finite loop space such that the mod p cohomology of the classifying space BG is a polynomial algebra. We consider when the adjoint bundle associated with a G-bundle over M splits on mod p cohomology as an algebra. In the case p = 2, an obstruction for the adjoint bundle to admit such a splitting is found in the Hochschild homology concerning the mod 2 cohomologies of BG and M via a module derivation. Moreover the derivation tells us that the splitting is not compatible with the Steenrod...