Indecomposable A-module summands in H* V which are unstable algebras.
We give conditions for a map of spaces to induce maps of the homology decompositions of the spaces which are compatible with the homology sections and dual Postnikov invariants. Several applications of this result are obtained. We show how the homotopy type of the (n+1)st homology section depends on the homotopy type of the nth homology section and the (n+1)st homology group. We prove that all homology sections of a co-H-space are co-H-spaces, all n-equivalences of the homology decomposition are...
We classify the indecomposable injective E(n)⁎E(n)-comodules, where E(n) is the Johnson-Wilson homology theory. They are suspensions of the , where 0 ≤ r ≤ n, with the endomorphism ring of being , where denotes the completion of E(r).