Displaying 121 – 140 of 164

Showing per page

The abelianization of the Johnson kernel

Alexandru Dimca, Richard Hain, Stefan Papadima (2014)

Journal of the European Mathematical Society

We prove that the first complex homology of the Johnson subgroup of the Torelli group T g is a non-trivial, unipotent T g -module for all g 4 and give an explicit presentation of it as a S y m . H 1 ( T g , C ) -module when g 6 . We do this by proving that, for a finitely generated group G satisfying an assumption close to formality, the triviality of the restricted characteristic variety implies that the first homology of its Johnson kernel is a nilpotent module over the corresponding Laurent polynomial ring, isomorphic to the...

The homotopy dimension of codiscrete subsets of the 2-sphere 𝕊²

J. W. Cannon, G. R. Conner (2007)

Fundamenta Mathematicae

Andreas Zastrow conjectured, and Cannon-Conner-Zastrow proved, that filling one hole in the Sierpiński curve with a disk results in a planar Peano continuum that is not homotopy equivalent to a 1-dimensional set. Zastrow's example is the motivation for this paper, where we characterize those planar Peano continua that are homotopy equivalent to 1-dimensional sets. While many planar Peano continua are not homotopy equivalent to 1-dimensional compacta, we prove that each has fundamental group that...

Currently displaying 121 – 140 of 164