Page 1

Displaying 1 – 8 of 8

Showing per page

Hyperspaces of Finite Sets in Universal Spaces for Absolute Borel Classes

Kotaro Mine, Katsuro Sakai, Masato Yaguchi (2005)

Bulletin of the Polish Academy of Sciences. Mathematics

By Fin(X) (resp. F i n k ( X ) ), we denote the hyperspace of all non-empty finite subsets of X (resp. consisting of at most k points) with the Vietoris topology. Let ℓ₂(τ) be the Hilbert space with weight τ and f ( τ ) the linear span of the canonical orthonormal basis of ℓ₂(τ). It is shown that if E = f ( τ ) or E is an absorbing set in ℓ₂(τ) for one of the absolute Borel classes α ( τ ) and α ( τ ) of weight ≤ τ (α > 0) then Fin(E) and each F i n k ( E ) are homeomorphic to E. More generally, if X is a connected E-manifold then Fin(X) is homeomorphic...

Hyperspaces of Peano continua of euclidean spaces

Helma Gladdines, Jan van Mill (1993)

Fundamenta Mathematicae

If X is a space then L(X) denotes the subspace of C(X) consisting of all Peano (sub)continua. We prove that for n ≥ 3 the space L ( n ) is homeomorphic to B , where B denotes the pseudo-boundary of the Hilbert cube Q.

Currently displaying 1 – 8 of 8

Page 1