Ein Endlichkeitssatz für Klassenzahlen invarianter Formen.
For smooth knottings of compact (not necessarily orientable) n-dimensional manifolds in (or ), we generalize the notion of knot moves to higher dimensions. This reproves and generalizes the Reidemeister moves of classical knot theory. We show that for any dimension there is a finite set of elementary isotopies, called moves, so that any isotopy is equivalent to a finite sequence of these moves.
For any collection of graphs we find the minimal dimension d such that the product is embeddable into (see Theorem 1 below). In particular, we prove that (K₅)ⁿ and are not embeddable into , where K₅ and are the Kuratowski graphs. This is a solution of a problem of Menger from 1929. The idea of the proof is a reduction to a problem from so-called Ramsey link theory: we show that any embedding , where O is a vertex of (K₅)ⁿ, has a pair of linked (n-1)-spheres.