Page 1

Displaying 1 – 5 of 5

Showing per page

Elementary moves for higher dimensional knots

Dennis Roseman (2004)

Fundamenta Mathematicae

For smooth knottings of compact (not necessarily orientable) n-dimensional manifolds in n + 2 (or n + 2 ), we generalize the notion of knot moves to higher dimensions. This reproves and generalizes the Reidemeister moves of classical knot theory. We show that for any dimension there is a finite set of elementary isotopies, called moves, so that any isotopy is equivalent to a finite sequence of these moves.

Embedding products of graphs into Euclidean spaces

Mikhail Skopenkov (2003)

Fundamenta Mathematicae

For any collection of graphs G , . . . , G N we find the minimal dimension d such that the product G × . . . × G N is embeddable into d (see Theorem 1 below). In particular, we prove that (K₅)ⁿ and ( K 3 , 3 ) are not embeddable into 2 n , where K₅ and K 3 , 3 are the Kuratowski graphs. This is a solution of a problem of Menger from 1929. The idea of the proof is a reduction to a problem from so-called Ramsey link theory: we show that any embedding L k O S 2 n - 1 , where O is a vertex of (K₅)ⁿ, has a pair of linked (n-1)-spheres.

Currently displaying 1 – 5 of 5

Page 1