Page 1

Displaying 1 – 7 of 7

Showing per page

Link cobordism.

Sylvain E. Cappell, Julius L. Shaneson (1980)

Commentarii mathematici Helvetici

Linking and coincidence invariants

Ulrich Koschorke (2004)

Fundamenta Mathematicae

Given a link map f into a manifold of the form Q = N × ℝ, when can it be deformed to an “unlinked” position (in some sense, e.g. where its components map to disjoint ℝ-levels)? Using the language of normal bordism theory as well as the path space approach of Hatcher and Quinn we define obstructions ω ̃ ε ( f ) , ε = + or ε = -, which often answer this question completely and which, in addition, turn out to distinguish a great number of different link homotopy classes. In certain cases they even allow a complete...

Currently displaying 1 – 7 of 7

Page 1