The size of triangulations supporting a given link.
We introduce the universal functorial Lefschetz invariant for endomorphisms of finite CW-complexes in terms of Grothendieck groups of endomorphisms of finitely generated free modules. It encompasses invariants like Lefschetz number, its generalization to the Lefschetz invariant, Nielsen number and -torsion of mapping tori. We examine its behaviour under fibrations.
Kauffman introduced a fundamental invariant of a virtual knot called the odd writhe. There are several generalizations of the odd writhe, such as the index polynomial and the odd writhe polynomial. In this paper, we define the n-writhe for each non-zero integer n, which unifies these invariants, and study various properties of the n-writhe.
Two mappings from a CW-complex to a 1-dimensional CW-complex are homotopic if and only if their restrictions to finite subcomplexes are homotopic.
We determine bifurcation sets of families of affine curves and study the topology of such families.