On Cohomology of Singularities of C°° Mapping.
Let (P,ω) be a symplectic manifold. We find an integrability condition for an implicit differential system D' which is formed by a Lagrangian submanifold in the canonical symplectic tangent bundle (TP,ὡ).
Viene presentata una costruzione che, dato un arbitrario nodo , produce allo stesso tempo: 1) un'applicazione polinomiale con singolarità (debolmente) isolata in e come tipo di nodo della singolarità; 2) una risoluzione delle singolarità di nel senso di Hironaka. Specializzando la costruzione ai nodi fibrati otteniamo una versione debole (a meno di scoppiementi e nella categoria analitica reale) di un reciproco per il teorema di fibrazione di Milnor.
We derive closed formulas for the Thom polynomials of two families of second order Thom-Boardman singularities . The formulas are given as linear combinations of Schur polynomials, and all coefficients are nonnegative.
The notion of an implicit Hamiltonian system-an isotropic mapping H: M → (TM,ω̇) into the tangent bundle endowed with the symplectic structure defined by canonical morphism between tangent and cotangent bundles of M-is studied. The corank one singularities of such systems are classified. Their transversality conditions in the 1-jet space of isotropic mappings are described and the corresponding symplectically invariant algebras of Hamiltonian generating functions are calculated.
2000 Mathematics Subject Classification: 05E05, 14N10, 57R45.We study the structure of the Thom polynomials for A4(−) singularities. We analyze the Schur function expansions of these polynomials. We show that partitions indexing the Schur function expansions of Thom polynomials for A4(−) singularities have at most four parts. We simplify the system of equations that determines these polynomials and give a recursive description of Thom polynomials for A4(−) singularities. We also give Thom polynomials...