Page 1

Displaying 1 – 1 of 1

Showing per page

Elementary moves for higher dimensional knots

Dennis Roseman (2004)

Fundamenta Mathematicae

For smooth knottings of compact (not necessarily orientable) n-dimensional manifolds in n + 2 (or n + 2 ), we generalize the notion of knot moves to higher dimensions. This reproves and generalizes the Reidemeister moves of classical knot theory. We show that for any dimension there is a finite set of elementary isotopies, called moves, so that any isotopy is equivalent to a finite sequence of these moves.

Currently displaying 1 – 1 of 1

Page 1