Skip to main content (access key 's'), Skip to navigation (access key 'n'), Accessibility information (access key '0')
EuDML - The European Digital Mathematics Library

Login | Register | (Why Register?)

  • Home
  • Advanced Search
  • Browse by Subject
  • Browse by Journals
  • Refs Lookup
  • Subjects
  • 57-XX Manifolds and cell complexes
  • 57Rxx Differential topology
  • 57R65 Surgery and handlebodies

57Rxx Differential topology

  • 57R05 Triangulating
  • 57R10 Smoothing
  • 57R12 Smooth approximations
  • 57R15 Specialized structures on manifolds (spin manifolds, framed manifolds, etc.)
  • 57R17 Symplectic and contact topology
  • 57R18 Topology and geometry of orbifolds
  • 57R19 Algebraic topology on manifolds
  • 57R20 Characteristic classes and numbers
  • 57R22 Topology of vector bundles and fiber bundles
  • 57R25 Vector fields, frame fields
  • 57R27 Controllability of vector fields on C ∞ and real-analytic manifolds
  • 57R30 Foliations; geometric theory
  • 57R32 Classifying spaces for foliations; Gelfand-Fuks cohomology
  • 57R35 Differentiable mappings
  • 57R40 Embeddings
  • 57R42 Immersions
  • 57R45 Singularities of differentiable mappings
  • 57R50 Diffeomorphisms
  • 57R52 Isotopy
  • 57R55 Differentiable structures
  • 57R56 Topological quantum field theories
  • 57R57 Applications of global analysis to structures on manifolds, Donaldson and Seiberg-Witten invariants
  • 57R58 Floer homology
  • 57R60 Homotopy spheres, Poincaré conjecture
  • 57R65 Surgery and handlebodies
  • 57R67 Surgery obstructions, Wall groups
  • 57R70 Critical points and critical submanifolds
  • 57R75 O - and SO -cobordism
  • 57R77 Complex cobordism ( U - and SU -cobordism)
  • 57R80 h - and s -cobordism
  • 57R85 Equivariant cobordism
  • 57R90 Other types of cobordism
  • 57R91 Equivariant algebraic topology of manifolds
  • 57R95 Realizing cycles by submanifolds
  • 57R99 None of the above, but in this section
  • Items

All a b c d e f g h i j k l m n o p q r s t u v w x y z Other

There are no documents fulfilling the condition.

EuDML
  • About EuDML initiative
  • Feedback
  •  version 2.1.7