On 4-planar mapping of special almost antiquaternionic spaces
The phenomenon of determining a geometric structure on a manifold by the group of its automorphisms is a modern analogue of the basic ideas of the Erlangen Program of F. Klein. The author calls such diffeomorphism groups admissible and he describes them by imposing some axioms. The main result is the followingTheorem. Let , , be a geometric structure such that its group of automorphisms satisfies either axioms 1, 2, 3 and 4, or axioms 1, 2, 3’, 4, 5, 6 and 7, and is compact, or axioms 1, 2,...
The author develops a -analogue of Rota’s finite operator calculus in enumerative combinatorics.
Contrary to a statement of Borsuk the author proves that every locally plane Peano continuum is embeddable into a 2-manifold.
[For the entire collection see Zbl 0742.00067.]Let be the Lie algebra , and let be the universal enveloping algebra for . Let be the center of . The authors consider the chain of Lie algebras . Then is an associative algebra which is called the Gel’fand-Zetlin subalgebra of . A module is called a -module if , where the summation is over the space of characters of and , , . The authors describe several properties of - modules. For example, they prove that if for some ...
The author previously studied with F. Ilosvay and B. Kis [Publ. Math. 42, 139-144 (1993; Zbl 0796.53022)] the diffeomorphisms between two Finsler spaces and which map the geodesics of to geodesics of (geodesic mappings).Now, he investigates the geodesic mappings between a Finsler space and a Riemannian space . The main result of this paper is as follows: if is of constant curvature and the mapping is a strongly geodesic mapping then or and .
In this paper a Weil approach to quasijets is discussed. For given manifolds and , a quasijet with source and target is a mapping which is a vector homomorphism for each one of the vector bundle structures of the iterated tangent bundle [A. Dekrét, Casopis Pest. Mat. 111, No. 4, 345-352 (1986; Zbl 0611.58004)]. Let us denote by the bundle of quasijets from to ; the space of non-holonomic -jets from to is embeded into . On the other hand, the bundle of -quasivelocities...
Let () denote the Grassmann manifold of linear -spaces (resp. oriented -spaces) in , and suppose . As an easy consequence of the Steenrod obstruction theory, one sees that -fold Whitney sum of the nontrivial line bundle over always has a nowhere vanishing section. The author deals with the following question: What is the least () such that the vector bundle admits a nowhere vanishing section ? Obviously, , and for the special case in which , it is known that . Using results...