Displaying 321 – 340 of 534

Showing per page

Accurate eigenvalue asymptotics for the magnetic Neumann Laplacian

Soeren Fournais, Bernard Helffer (2006)

Annales de l’institut Fourier

Motivated by the theory of superconductivity and more precisely by the problem of the onset of superconductivity in dimension two, many papers devoted to the analysis in a semi-classical regime of the lowest eigenvalue of the Schrödinger operator with magnetic field have appeared recently. Here we would like to mention the works by Bernoff-Sternberg, Lu-Pan, Del Pino-Felmer-Sternberg and Helffer-Morame and also Bauman-Phillips-Tang for the case of a disc. In the present paper we settle one important...

Affine connections on almost para-cosymplectic manifolds

Adara M. Blaga (2011)

Czechoslovak Mathematical Journal

Identities for the curvature tensor of the Levi-Cività connection on an almost para-cosymplectic manifold are proved. Elements of harmonic theory for almost product structures are given and a Bochner-type formula for the leaves of the canonical foliation is established.

Affine liftings of torsion-free connections to Weil bundles

Jacek Dębecki (2009)

Colloquium Mathematicae

This paper contains a classification of all affine liftings of torsion-free linear connections on n-dimensional manifolds to any linear connections on Weil bundles under the condition that n ≥ 3.

Affine structures on jet and Weil bundles

David Blázquez-Sanz (2009)

Colloquium Mathematicae

Weil algebra morphisms induce natural transformations between Weil bundles. In some well known cases, a natural transformation is endowed with a canonical structure of affine bundle. We show that this structure arises only when the Weil algebra morphism is surjective and its kernel has null square. Moreover, in some cases, this structure of affine bundle passes to jet spaces. We give a characterization of this fact in algebraic terms. This algebraic condition also determines an affine structure...

Affinely invariant symmetry sets

Peter Giblin (2008)

Banach Center Publications

The classical medial axis and symmetry set of a smooth simple plane curve M, depending as they do on circles bitangent to M, are invariant under euclidean transformations. This article surveys the various ways in which the construction has been adapted to be invariant under affine transformations. They include affine distance and area constructions, and also the 'centre symmetry set' which generalizes central symmetry. A connexion is also made with the tricentre set of a convex plane curve, which...

Currently displaying 321 – 340 of 534