Page 1

Displaying 1 – 4 of 4

Showing per page

Décomposition de Hodge basique pour un feuilletage riemannien

Aziz El Kacimi-Alaoui, Gilbert Hector (1986)

Annales de l'institut Fourier

Soit un feuilletage de codimension n sur une variété compacte M . On montre que le complexe des formes basiques Ω * ( M / ) admet une décomposition de Hodge. Il en résulte que la cohomologie basique H * ( M / ) de ( M , ) est de dimension finie et vérifie la dualité de Poincaré si et seulemnt si H n ( M / ) 0 .

Déviations de moyennes ergodiques, flots de Teichmüller et cocycle de Kontsevich-Zorich

Raphaël Krikorian (2003/2004)

Séminaire Bourbaki

Étant donnée une fonction régulière de moyenne nulle sur le tore de dimension 2 , il est facile de voir que ses intégrales ergodiques au-dessus d’un flot de translation “générique”sont bornées. Il y a une dizaine d’années, A. Zorich a observé numériquement une croissance en puissance du temps de ces intégrales ergodiques au-dessus de flots d’hamiltoniens (non-exacts) “génériques”sur des surfaces de genre supérieur ou égal à 2 , et Kontsevich et Zorich ont proposé une explication (conjecturelle) de...

Duality of Hodge numbers of compact complex nilmanifolds

Takumi Yamada (2015)

Complex Manifolds

A compact K¨ahlerian manifoldM of dimension n satisfies hp,q(M) = hq,p(M) for each p, q.However, a compact complex manifold does not satisfy the equations in general. In this paper, we consider duality of Hodge numbers of compact complex nilmanifolds.

Currently displaying 1 – 4 of 4

Page 1