Singularités d'ordre supérieur de 1-formes, 2-formes et équations de Pfaff
We give a complete classification of germs of generic 2-distributions on 3-manifolds. By a 2-distribution we mean either a module generated by two vector fields (at singular points its dimension decreases) or a Pfaff equation, i.e. a module generated by a differential 1-form (at singular points the dimension of its kernel increases).
We introduce a higher dimensional analogue of the Engel structure, motivated by the Cartan prolongation of contact manifolds. We study the stability of such structure, generalizing the Gray-type stability results for Engel manifolds. We also derive local normal forms defining such a distribution.
Soit l’algèbre des fonctions sur engendrée par les fonctions polynomiales et les exponentielles de formes linéaires. La partie de appartient à si et seulement s’il existe et dans pour lesquels est l’image par la projection canonique de sur , de l’ensemble des zéros de . Soit le plus petit sous-ensemble de parties de qui contient , l’adhérence de ses éléments et les images par la projection canonique de qui contient , l’adhérence de ses éléments et les images par la...
On démontre que dans toute surface rationnelle, non-isomorphe au plan projectif, il existe une feuilletage analytique rigide, possédant des feuilles algébriques et n’ayant que des singularités isolées.