Displaying 341 – 360 of 390

Showing per page

The natural linear operators T * T T ( r )

J. Kurek, W. M. Mikulski (2003)

Colloquium Mathematicae

For natural numbers n ≥ 3 and r a complete description of all natural bilinear operators T * × f T ( 0 , 0 ) T ( 0 , 0 ) T ( r ) is presented. Next for natural numbers r and n ≥ 3 a full classification of all natural linear operators T * | f T T ( r ) is obtained.

The natural operators lifting 1-forms to some vector bundle functors

J. Kurek, W. M. Mikulski (2002)

Colloquium Mathematicae

Let F:ℳ f→ ℬ be a vector bundle functor. First we classify all natural operators T | f T ( 0 , 0 ) ( F | f ) * transforming vector fields to functions on the dual bundle functor ( F | f ) * . Next, we study the natural operators T * | f T * ( F | f ) * lifting 1-forms to ( F | f ) * . As an application we classify the natural operators T * | f T * ( F | f ) * for some well known vector bundle functors F.

The natural operators lifting connections to higher order cotangent bundles

Włodzimierz M. Mikulski (2014)

Czechoslovak Mathematical Journal

We prove that the problem of finding all f m -natural operators C : Q Q T r * lifting classical linear connections on m -manifolds M into classical linear connections C M ( ) on the r -th order cotangent bundle T r * M = J r ( M , ) 0 of M can be reduced to the well known one of describing all f m -natural operators D : Q p T q T * sending classical linear connections on m -manifolds M into tensor fields D M ( ) of type ( p , q ) on M .

The natural operators lifting horizontal 1-forms to some vector bundle functors on fibered manifolds

J. Kurek, W. M. Mikulski (2003)

Colloquium Mathematicae

Let F:ℱ ℳ → ℬ be a vector bundle functor. First we classify all natural operators T p r o j | m , n T ( 0 , 0 ) ( F | m , n ) * transforming projectable vector fields on Y to functions on the dual bundle (FY)* for any m , n -object Y. Next, under some assumption on F we study natural operators T * h o r | m , n T * ( F | m , n ) * lifting horizontal 1-forms on Y to 1-forms on (FY)* for any Y as above. As an application we classify natural operators T * h o r | m , n T * ( F | m , n ) * for some vector bundle functors F on fibered manifolds.

The natural operators lifting vector fields to generalized higher order tangent bundles

Włodzimierz M. Mikulski (2000)

Archivum Mathematicum

For natural numbers r and n and a real number a we construct a natural vector bundle T ( r ) , a over n -manifolds such that T ( r ) , 0 is the (classical) vector tangent bundle T ( r ) of order r . For integers r 1 and n 3 and a real number a < 0 we classify all natural operators T | M n T T ( r ) , a lifting vector fields from n -manifolds to T ( r ) , a .

The natural operators lifting vector fields to ( J r T * ) *

Włodzimierz M. Mikulski (2000)

Archivum Mathematicum

For integers r 2 and n 2 a complete classification of all natural operators A : T | M n T ( J r T * ) * lifting vector fields to vector fields on the natural bundle ( J r T * ) * dual to r -jet prolongation J r T * of the cotangent bundle over n -manifolds is given.

The natural operators T ( 0 , 0 ) T ( 1 , 1 ) T ( r )

Włodzimierz M. Mikulski (2003)

Colloquium Mathematicae

We study the problem of how a map f:M → ℝ on an n-manifold M induces canonically an affinor A ( f ) : T T ( r ) M T T ( r ) M on the vector r-tangent bundle T ( r ) M = ( J r ( M , ) ) * over M. This problem is reflected in the concept of natural operators A : T | f ( 0 , 0 ) T ( 1 , 1 ) T ( r ) . For integers r ≥ 1 and n ≥ 2 we prove that the space of all such operators is a free (r+1)²-dimensional module over ( T ( r ) ) and we construct explicitly a basis of this module.

The natural transformations between r-tangent and r-cotangent bundles over Riemannian manifolds

Jan Kurek, Włodzimierz M. Mikulski (2015)

Annales UMCS, Mathematica

If (M,g) is a Riemannian manifold, we have the well-known base preserving vector bundle isomorphism TM ≅ T∗ M given by υ → g(υ,−) between the tangent TM and the cotangent T∗ M bundles of M. In the present note, we generalize this isomorphism to the one T(r)M ≅ Tr∗ M between the r-th order vector tangent T(r)M = (Jr(M,R)0)∗ and the r-th order cotangent Tr∗ M = Jr(M,R)0 bundles of M. Next, we describe all base preserving vector bundle maps CM(g) : T(r)M → Tr∗ M depending on a Riemannian metric g in...

The natural transformations between T-th order prolongation of tangent and cotangent bundles over Riemannian manifolds

Mariusz Plaszczyk (2015)

Annales UMCS, Mathematica

If (M,g) is a Riemannian manifold then there is the well-known base preserving vector bundle isomorphism TM → T* M given by v → g(v,−) between the tangent TM and the cotangent T* M bundles of M. In the present note first we generalize this isomorphism to the one JrTM → JrTM between the r-th order prolongation JrTM of tangent TM and the r-th order prolongation JrT M of cotangent TM bundles of M. Further we describe all base preserving vector bundle maps DM(g) : JrTM → JrT* M depending on a Riemannian...

The natural transformations T T ( r ) T T ( r )

Włodzimierz M. Mikulski (2000)

Archivum Mathematicum

For natural numbers r 2 and n a complete classification of natural transformations A : T T ( r ) T T ( r ) over n -manifolds is given, where T ( r ) is the linear r -tangent bundle functor.

The vertical prolongation of the projectable connections

Anna Bednarska (2012)

Annales UMCS, Mathematica

We prove that any first order F2 Mm1,m2,n1,n2-natural operator transforming projectable general connections on an (m1,m2, n1, n2)-dimensional fibred-fibred manifold p = (p, p) : (pY : Y → Y) → (pM : M → M) into general connections on the vertical prolongation V Y → M of p: Y → M is the restriction of the (rather well-known) vertical prolongation operator V lifting general connections Γ on a fibred manifold Y → M into VΓ (the vertical prolongation of Γ) on V Y → M.

Currently displaying 341 – 360 of 390