Quantum spacetime: a disambiguation.
We outline our recent results on bicovariant differential calculi on co-quasitriangular Hopf algebras, in particular that if is a quantum tangent space (quantum Lie algebra) for a CQT Hopf algebra A, then the space is a braided Lie algebra in the category of A-comodules. An important consequence of this is that the universal enveloping algebra is a bialgebra in the category of A-comodules.
It is shown that the isospectral bi-equivariant spectral triple on quantum SU(2) and the isospectral equivariant spectral triples on the Podleś spheres are related by restriction. In this approach, the equatorial Podleś sphere is distinguished because only in this case the restricted spectral triple admits an equivariant grading operator together with a real structure (up to infinitesimals of arbitrary high order). The real structure is expressed by the Tomita operator on quantum SU(2) and it is...
A list of known quantum spheres of dimension one, two and three is presented.
Connes and Moscovici recently studied "twisted" spectral triples (A,H,D) in which the commutators [D,a] are replaced by D∘a - σ(a)∘D, where σ is a second representation of A on H. The aim of this note is to point out that this yields representations of arbitrary covariant differential calculi over Hopf algebras in the sense of Woronowicz. For compact quantum groups, H can be completed to a Hilbert space and the calculus is given by bounded operators. At the end, we discuss an explicit example of...