Loading [MathJax]/extensions/MathZoom.js
The introduction of the concepts of energy machinery and energy structure on a manifold makes it possible a large class of energy representations of gauge groups including, as a very particular case, the ones known up to now. By using an adaptation of methods initiated by I. M. Gelfand, we provide a sufficient condition for the irreducibility of these representations.
We investigate the energy of measures (both positive and signed) on compact Riemannian manifolds. A formula is given relating the energy integral of a positive measure with the projections of the measure onto the eigenspaces of the Laplacian. This formula is analogous to the classical formula comparing the energy of a measure in Euclidean space with a weighted L² norm of its Fourier transform. We show that the boundedness of a modified energy integral for signed measures gives bounds on the Hausdorff...
The -convex functions are the viscosity subsolutions to the fully nonlinear elliptic equations , where is the elementary symmetric function of order , , of the eigenvalues of the Hessian matrix . For example, is the Laplacian and is the real Monge-Ampère operator det , while -convex functions and -convex functions are subharmonic and convex in the classical sense, respectively. In this paper, we establish an approximation theorem for negative -convex functions, and give several...
Currently displaying 1 –
3 of
3