On a class of variational problems defined by polynomial Lagrangians
In this Note we investigate about some relations between Poincaré dual and other topological objects, such as intersection index, topological degree, and Maslov index of Lagrangian submanifolds. A simple proof of the Poincaré-Hopf theorem is recalled. The Lagrangian submanifolds are the geometrical, multi-valued, solutions of physical problems of evolution governed by Hamilton-Jacobi equations: the computation of the algebraic number of the branches is showed to be performed by using Poincaré dual....