Characterizing infinite dimensional manifolds topologically
The Square Root Normal Field (SRNF), introduced by Jermyn et al. in [5], provides a way of representing immersed surfaces in , and equipping the set of these immersions with a “distance function" (to be precise, a pseudometric) that is easy to compute. Importantly, this distance function is invariant under reparametrizations (i.e., under self-diffeomorphisms of the domain surface) and under rigid motions of . Thus, it induces a distance function on the shape space of immersions, i.e., the space...
Smooth maps between riemannian manifolds are often not strongly dense in Sobolev classes of finite energy maps, and an energy drop in a limiting sequence of smooth maps often is accompanied by the production (or bubbling) of an associated rectifiable current. For finite 2-energy maps from the 3 ball to the 2 sphere, this phenomenon has been well-studied in works of Bethuel-Brezis-Coron and Giaquinta-Modica-Soucek where a finite mass 1 dimensional rectifiable current occurs whose boundary is the...