Of the structure of the Euler mapping
Page 1
Demeter Krupka (1974)
Archivum Mathematicum
Hans Triebel (1988)
Studia Mathematica
Patrick Bonckaert, Freddy Dumortier (1984)
Mathematische Zeitschrift
Marta Bunge (1987)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Jerzy Kijowski (1972)
Colloquium Mathematicae
Haïm Brezis, Petru Mironescu (2001)
RACSAM
Reuven Segev (1997)
Extracta Mathematicae
This work presents a setting for the formulation of the mechanics of growing bodies. By the mechanics of growing bodies we mean a theory in which the material structure of the body does not remain fixed. Material points may be added or removed from the body.
Josef Mattes (1993)
Monatshefte für Mathematik
Maysam Maysami Sadr, Danial Bouzarjomehri Amnieh (2024)
Archivum Mathematicum
Albeverio, Kondratiev, and Röckner have introduced a type of differential geometry, which we call lifted geometry, for the configuration space of any manifold . The name comes from the fact that various elements of the geometry of are constructed via lifting of the corresponding elements of the geometry of . In this note, we construct a general algebraic framework for lifted geometry which can be applied to various “infinite dimensional spaces” associated to . In order to define a lifted...
Mikio Furuta, M.A. Guest, M. Kotani (1994)
Mathematische Zeitschrift
Manoharan, P. (2002)
International Journal of Mathematics and Mathematical Sciences
Reshetnyak, Yu.G. (2006)
Sibirskij Matematicheskij Zhurnal
Page 1