The Bonnet-Meyers theorem is true for Riemann Hilbert Manifolds.
Let = u: u unitary and u-1 compact stand for the unitary Fredholm group. We prove the following convexity result. Denote by the rectifiable distance induced by the Finsler metric given by the operator norm in . If and the geodesic β joining u₀ and u₁ in satisfy , then the map is convex for s ∈ [0,1]. In particular, the convexity radius of the geodesic balls in is π/4. The same convexity property holds in the p-Schatten unitary groups = u: u unitary and u-1 in the p-Schatten class...