Riemannian geometries on spaces of plane curves
We study some Riemannian metrics on the space of smooth regular curves in the plane, viewed as the orbit space of maps from to the plane modulo the group of diffeomorphisms of , acting as reparametrizations. In particular we investigate the metric, for a constant , where is the curvature of the curve and , are normal vector fields to . The term is a sort of geometric Tikhonov regularization because, for , the geodesic distance between any two distinct curves is 0, while for the...