Page 1

Displaying 1 – 5 of 5

Showing per page

Une généralisation du théorème de Myers-Steenrod aux pseudogroupes d'isométries

Éliane Salem (1988)

Annales de l'institut Fourier

On montre que tout pseudogroupe d’isométries locales d’une variété riemannienne, qui est complet et fermé pour la topologie C 1 est un pseudogroupe de Lie. Ce résultat généralise au cas des pseudogroupes le théorème de S. Myers et N. Steenrod selon lequel le groupe des isométries d’une variété riemannienne est un groupe de Lie.

Universal lifting theorem and quasi-Poisson groupoids

David Inglesias-Ponte, Camille Laurent-Gengoux, Ping Xu (2012)

Journal of the European Mathematical Society

We prove the universal lifting theorem: for an α -simply connected and α -connected Lie groupoid Γ with Lie algebroid A , the graded Lie algebra of multi-differentials on A is isomorphic to that of multiplicative multi-vector fields on Γ . As a consequence, we obtain the integration theorem for a quasi-Lie bialgebroid, which generalizes various integration theorems in the literature in special cases. The second goal of the paper is the study of basic properties of quasi-Poisson groupoids. In particular,...

Currently displaying 1 – 5 of 5

Page 1