The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We study gauge transformations of Dirac structures and the relationship between gauge and
Morita equivalences of Poisson manifolds. We describe how the symplectic structure of a
symplectic groupoid is affected by a gauge transformation of the Poisson structure on its
identity section, and prove that gauge-equivalent integrable Poisson structures are
Morita equivalent. As an example, we study certain generic sets of Poisson structures on
Riemann surfaces: we find complete gauge-equivalence invariants...
Un système fini d’isométries partielles de est dit à générateurs indépendants si les composés non triviaux fixent au plus un point. On décrit un procédé simple et naturel pour obtenir des générateurs indépendants, sans modifier les orbites, pour tout système sans composante minimale homogène : en prenant la restriction de chaque générateur à un certain sous-intervalle de son domaine. Un système avec une composante minimale homogène ne possède pas de générateurs indépendants.
Let M be a manifold with a regular foliation F. We recall the construction of the fundamental groupoid and the homotopy groupoid associated to F. We describe some interesting particular cases and give some glueing techniques. We characterize the cases where these groupoids are Hausdorff spaces.We study in particular both groupoids associated to foliations with Reeb components.
Currently displaying 1 –
3 of
3