The Atiyah-Patodi-Singer theorem for perturbed Dirac operators on even-dimensional manifolds with bounded geometry.
Dirac-harmonic maps are a mathematical version (with commuting variables only) of the solutions of the field equations of the non-linear supersymmetric sigma model of quantum field theory. We explain this structure, including the appropriate boundary conditions, in a geometric framework. The main results of our paper are concerned with the analytic regularity theory of such Dirac-harmonic maps. We study Dirac-harmonic maps from a Riemannian surface to an arbitrary compact Riemannian manifold. We...