Combinatorial structure of Stokes regions of a simple singularity.
It is known that the singular set of a generic smooth map of an -dimensional manifold into a surface is a closed 1-dimensional submanifold of and that it has a natural stratification induced by the absolute index. In this paper, we give a complete characterization of those 1-dimensional (stratified) submanifolds which arise as the singular set of a generic map in terms of the homology class they represent.
On donne une condition suffisante explicite et générique pour qu’une forme de Pfaff à deux variables complexes ait ses feuilles denses tant localement que globalement.
Equivalence and zero sets of certain maps on infinite dimensional spaces are studied using an approach similar to the deformation lemma from the singularity theory.
We show under some assumptions that a differentiable function can be transformed globally to a polynomial or a rational function by some diffeomorphism. One of the assumptions is that the function is proper, the number of critical points is finite, and the Milnor number of the germ at each critical point is finite.
A subsheaf of the sheaf of germs functions over an open subset of is called a sheaf of sub function. Comparing with the investigations of sheaves of ideals of , we study the finite presentability of certain sheaves of sub -rings. Especially we treat the sheaf defined by the distribution of Mather’s -classes of a mapping.