Generic Bifurcations of Varieties II.
In this paper we show to what extent the closed, singular 2-forms are represented, up to the smooth equivalence, by their restrictions to the corresponding singularity set. In the normalization procedure of the singularity set we find the sufficient conditions for the given closed 2-form to be a pullback of the classical Darboux form. We also find the classification list of simple singularities of the maximal isotropic submanifold-germs in the codimension one Martinet's singular symplectic structures....
Pour tout triplet d’entiers tels que , se pose la question d’étudier les germes de difféomorphismes ou de champs de vecteurs sur , de classe , -déterminés en classe , c’est-à-dire respectivement conjugués ou équivalents en classe , à tout germe ayant la même classe et le même -jet. Cette question est abordée ici, avec quelque généralité en dimension 2 et pour les germes de champs de vecteurs de codimension 2, en dimension 3 et 4. Une conséquence de cette dernière étude est l’existence...
In this paper, we give some examples which point to the non-existence of -global stable diagrams , compact. If : is fixed we define the -equivalence for maps and the corresponding -stability. The globalization procedure works and we can compare the -stability, -infinitesimal stability, and -homotopical stability. Also we give some characterization theorems for lower dimensions.
Nous étudions les trajectoires du gradient sous-riemannien (appellé horizontal) de fonctions polynômes. Dans ce cadre l’inégalité de Łojasiewicz n’est pas valide et une trajectoire du gradient horizontal peut être de longueur infinie, et peut même s’accumuler sur une courbe fermée. Nous montrons que ces comportement sont exceptionnels ; et que, pour une fonction générique les trajectoires de son gradient horizontal ont des propriétés similaires au cas du gradient riemannien. Pour obtenir la finitude...
In this paper we prove the implicit function theorem for locally blow-analytic functions, and as an interesting application of using blow-analytic homeomorphisms, we describe a very easy way to resolve singularities of analytic curves.
Using the Berline-Vergne integration formula for equivariant cohomology for torus actions, we prove that integrals over Grassmannians (classical, Lagrangian or orthogonal ones) of characteristic classes of the tautological bundle can be expressed as iterated residues at infinity of some holomorphic functions of several variables. The results obtained for these cases can be expressed as special cases of one formula involving the Weyl group action on the characters of the natural representation of...
To a given complex-analytic equidimensional corank-1 germ f, one can associate a set of integer 𝓐-invariants such that f is 𝓐-finite if and only if all these invariants are finite. An analogous result holds for corank-1 germs for which the source dimension is smaller than the target dimension.