On Probability Function On Pseudo-Boolean Algebra
It is well known that the fuzzy sets theory can be successfully used in quantum models ([5, 26]). In this paper we give first a review of recent development in the probability theory on tribes and their generalizations – multivalued (MV)-algebras. Secondly we show some applications of the described method to develop probability theory on IF-events.
We present a mathematical model allowing formally define the concepts of empirical and theoretical knowledge. The model consists of a finite set P of predicates and a probability space (Ω, S, P) over a finite set Ω called ontology which consists of objects ω for which the predicates π ∈ P are either valid (π(ω) = 1) or not valid (π(ω) = 0). Since this is a first step in this area, our approach is as simple as possible, but still nontrivial, as it is demonstrated by examples. More realistic approach...
We present some extensions of the Borel-Cantelli Lemma in terms of moments. Our result can be viewed as a new improvement to the Borel-Cantelli Lemma. Our proofs are based on the expansion of moments of some partial sums by using Stirling numbers. We also give a comment concerning the results of Petrov V.V., A generalization of the Borel-Cantelli Lemma, Statist. Probab. Lett. 67 (2004), no. 3, 233–239.
von Neumann's reliance on the von Mises frequentist interpretation is discussed and compared with the Dutchbook approach proposed by de Finetti.