The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 3 of 3

Showing per page

Invariance principles for random walks conditioned to stay positive

Francesco Caravenna, Loïc Chaumont (2008)

Annales de l'I.H.P. Probabilités et statistiques

Let {Snbe a random walk in the domain of attraction of a stable law 𝒴 , i.e. there exists a sequence of positive real numbers ( an) such that Sn/anconverges in law to 𝒴 . Our main result is that the rescaled process (S⌊nt⌋/an, t≥0), when conditioned to stay positive, converges in law (in the functional sense) towards the corresponding stable Lévy process conditioned to stay positive. Under some additional assumptions, we also prove a related invariance principle for the random walk killed at its first...

Currently displaying 1 – 3 of 3

Page 1