Invariance principles for random walks conditioned to stay positive
Let {Snbe a random walk in the domain of attraction of a stable law , i.e. there exists a sequence of positive real numbers ( an) such that Sn/anconverges in law to . Our main result is that the rescaled process (S⌊nt⌋/an, t≥0), when conditioned to stay positive, converges in law (in the functional sense) towards the corresponding stable Lévy process conditioned to stay positive. Under some additional assumptions, we also prove a related invariance principle for the random walk killed at its first...