Page 1 Next

Displaying 1 – 20 of 22

Showing per page

On continuous convergence and epi-convergence of random functions. Part I: Theory and relations

Silvia Vogel, Petr Lachout (2003)

Kybernetika

Continuous convergence and epi-convergence of sequences of random functions are crucial assumptions if mathematical programming problems are approximated on the basis of estimates or via sampling. The paper investigates “almost surely” and “in probability” versions of these convergence notions in more detail. Part I of the paper presents definitions and theoretical results and Part II is focused on sufficient conditions which apply to many models for statistical estimation and stochastic optimization....

On continuous convergence and epi-convergence of random functions. Part II: Sufficient conditions and applications

Silvia Vogel, Petr Lachout (2003)

Kybernetika

Part II of the paper aims at providing conditions which may serve as a bridge between existing stability assertions and asymptotic results in probability theory and statistics. Special emphasis is put on functions that are expectations with respect to random probability measures. Discontinuous integrands are also taken into account. The results are illustrated applying them to functions that represent probabilities.

On non-ergodic versions of limit theorems

Dalibor Volný (1989)

Aplikace matematiky

The author investigates non ergodic versions of several well known limit theorems for strictly stationary processes. In some cases, the assumptions which are given with respect to general invariant measure, guarantee the validity of the theorem with respect to ergodic components of the measure. In other cases, the limit theorem can fail for all ergodic components, while for the original invariant measure it holds.

On the Argmin-sets of stochastic processes and their distributional convergence in Fell-type-topologies

Dietmar Ferger (2011)

Kybernetika

Let ϵ - ( Z ) be the collection of all ϵ -optimal solutions for a stochastic process Z with locally bounded trajectories defined on a topological space. For sequences ( Z n ) of such stochastic processes and ( ϵ n ) of nonnegative random variables we give sufficient conditions for the (closed) random sets ϵ n - ( Z n ) to converge in distribution with respect to the Fell-topology and to the coarser Missing-topology.

On the mean speed of convergence of empirical and occupation measures in Wasserstein distance

Emmanuel Boissard, Thibaut Le Gouic (2014)

Annales de l'I.H.P. Probabilités et statistiques

In this work, we provide non-asymptotic bounds for the average speed of convergence of the empirical measure in the law of large numbers, in Wasserstein distance. We also consider occupation measures of ergodic Markov chains. One motivation is the approximation of a probability measure by finitely supported measures (the quantization problem). It is found that rates for empirical or occupation measures match or are close to previously known optimal quantization rates in several cases. This is notably...

On uniform tail expansions of multivariate copulas and wide convergence of measures

Piotr Jaworski (2006)

Applicationes Mathematicae

The theory of copulas provides a useful tool for modeling dependence in risk management. In insurance and finance, as well as in other applications, dependence of extreme events is particularly important, hence there is a need for a detailed study of the tail behaviour of multivariate copulas. We investigate the class of copulas having regular tails with a uniform expansion. We present several equivalent characterizations of uniform tail expansions. Next, basing on them, we determine the class of...

Currently displaying 1 – 20 of 22

Page 1 Next