La loi du logarithme itéré bornée dans les espaces de Banach
We introduce various notions of large-scale isoperimetric profile on a locally compact, compactly generated amenable group. These asymptotic quantities provide measurements of the degree of amenability of the group. We are particularly interested in a class of groups with exponential volume growth which are the most amenable possible in that sense. We show that these groups share various interesting properties such as the speed of on-diagonal decay of random walks, the vanishing of the reduced first...
Let Gd be the semi-direct product of R*+ and Rd, d ≥ 1 and let us consider the product group Gd,N = Gd x RN, N ≥ 1. For a large class of probability measures μ on Gd,N, one prove that there exists ρ(μ) ∈ ]0,1] such that the sequence of finite measures{(n(N+3)/2 / ρ(μ)n) μ*n}n ≥ 1converges weakly to a non-degenerate measure.
Let be a locally compact non-compact metric group. Assuming that is abelian we construct symmetric aperiodic random walks on with probabilities of return to any neighborhood V of the neutral element decaying at infinity almost as fast as the exponential function n ↦ exp(-n). We also show that for some discrete groups , the decay of the function can be made as slow as possible by choosing appropriate aperiodic random walks Sₙ on .