The Analogues of Entropy and of Fisher's Information Measure in Free Probability Theory III: The Absence of Cartan Subalgebras.
The goal of this paper is to analyse the asymptotic behaviour of the cycle process and the total number of cycles of weighted and generalized weighted random permutations which are relevant models in physics and which extend the Ewens measure. We combine tools from combinatorics and complex analysis (e.g. singularity analysis of generating functions) to prove that under some analytic conditions (on relevant generating functions) the cycle process converges to a vector of independent Poisson variables...
We prove the following analogue of the Heyde theorem for a-adic solenoids. Let ξ₁, ξ₂ be independent random variables with values in an a-adic solenoid and with distributions μ₁, μ₂. Let be topological automorphisms of such that are topological automorphisms of too. Assuming that the conditional distribution of the linear form L₂ = β₁ξ₁ + β₂ξ₂ given L₁ = α₁ξ₁ + α₂ξ₂ is symmetric, we describe the possible distributions μ₁, μ₂.
Let G be an abelian topological group. The Lévy continuity theorem says that if G is an LCA group, then it has the following property (PL) a sequence of Radon probability measures on G is weakly convergent to a Radon probability measure μ if and only if the corresponding sequence of Fourier transforms is pointwise convergent to the Fourier transform of μ. Boulicaut [Bo] proved that every nuclear locally convex space G has the property (PL). In this paper we prove that the property (PL) is inherited...
Let H be a real Hilbert space. It is well known that a positive-definite function φ on H is the Fourier transform of a Radon measure on the dual space if (and only if) φ is continuous in the Sazonov topology (resp. the Gross topology) on H. Let G be an additive subgroup of H and let (resp. ) be the character group endowed with the topology of uniform convergence on precompact (resp. bounded) subsets of G. It is proved that if a positive-definite function φ on G is continuous in the Gross topology,...
We use subgroup distortion to determine the rate of escape of a simple random walk on a class of polycyclic groups, and we show that the rate of escape is invariant under changes of generating set for these groups. For metabelian groups, we define a stronger form of subgroup distortion which applies to non-finitely generated subgroups. Under this hypothesis, we compute the rate of escape for certain random walks on some abelian-by-cyclic groups via a comparison to the toppling of a dissipative abelian...