Density of safe matrices.
We find the transition kernels for four markovian interacting particle systems on the line, by proving that each of these kernels is intertwined with a Karlin–McGregor-type kernel. The resulting kernels all inherit the determinantal structure from the Karlin–McGregor formula, and have a similar form to Schütz’s kernel for the totally asymmetric simple exclusion process.
We analyze a stochastic neuronal network model which corresponds to an all-to-all network of discretized integrate-and-fire neurons where the synapses are failure-prone. This network exhibits different phases of behavior corresponding to synchrony and asynchrony, and we show that this is due to the limiting mean-field system possessing multiple attractors. We also show that this mean-field limit exhibits a first-order phase transition as a function...