The search session has expired. Please query the service again.
We study a class of rotation invariant determinantal ensembles in the complex plane; examples include the eigenvalues of Gaussian random matrices and the roots of certain families of random polynomials. The main result is a criterion for a central limit theorem to hold for angular statistics of the points. The proof exploits an exact formula relating the generating function of such statistics to the determinant of a perturbed Toeplitz matrix.
We consider n × n random k-circulant matrices with n → ∞ and k = k(n) whose input sequence {al}l≥0 is independent and identically distributed (i.i.d.) random variables with finite (2 + δ) moment. We study the asymptotic distribution of the spectral radius, when n = kg + 1. For this, we first derive the tail behaviour of the g fold product of i.i.d. exponential random variables. Then using this tail behaviour result and appropriate normal approximation techniques, we show that with appropriate scaling...
Currently displaying 1 –
2 of
2