Page 1 Next

Displaying 1 – 20 of 31

Showing per page

Determinantal transition kernels for some interacting particles on the line

A. B. Dieker, J. Warren (2008)

Annales de l'I.H.P. Probabilités et statistiques

We find the transition kernels for four markovian interacting particle systems on the line, by proving that each of these kernels is intertwined with a Karlin–McGregor-type kernel. The resulting kernels all inherit the determinantal structure from the Karlin–McGregor formula, and have a similar form to Schütz’s kernel for the totally asymmetric simple exclusion process.

Didactical note: probabilistic conditionality in a Boolean algebra.

Enric Trillas, Claudi Alsina, Settimo Termini (1996)

Mathware and Soft Computing

This note deals with two logical topics and concerns Boolean Algebras from an elementary point of view. First we consider the class of operations on a Boolean Algebra that can be used for modelling If-then propositions. These operations, or Conditionals, are characterized under the hypothesis that they only obey to the Modus Ponens-Inequality, and it is shown that only six of them are boolean two-place functions. Is the Conditional Probability the Probability of a Conditional? This problem will...

Currently displaying 1 – 20 of 31

Page 1 Next