Page 1

Displaying 1 – 17 of 17

Showing per page

Harmonic analysis of symmetric random graphs

Steffen Lauritzen (2020)

Kybernetika

This note attempts to understand graph limits as defined by Lovasz and Szegedy in terms of harmonic analysis on semigroups. This is done by representing probability distributions of random exchangeable graphs as mixtures of characters on the semigroup of unlabeled graphs with node-disjoint union, thereby providing an alternative derivation of de Finetti's theorem for random exchangeable graphs.

Harmonic measures versus quasiconformal measures for hyperbolic groups

Sébastien Blachère, Peter Haïssinsky, Pierre Mathieu (2011)

Annales scientifiques de l'École Normale Supérieure

We establish a dimension formula for the harmonic measure of a finitely supported and symmetric random walk on a hyperbolic group. We also characterize random walks for which this dimension is maximal. Our approach is based on the Green metric, a metric which provides a geometric point of view on random walks and, in particular, which allows us to interpret harmonic measures as quasiconformal measures on the boundary of the group.

Hölderian invariance principle for Hilbertian linear processes

Alfredas Račkauskas, Charles Suquet (2009)

ESAIM: Probability and Statistics

Let ( ξ n ) n 1 be the polygonal partial sums processes built on the linear processes X n = i 0 a i ( ϵ n - i ) , n ≥ 1, where ( ϵ i ) i are i.i.d., centered random elements in some separable Hilbert space and the ai's are bounded linear operators , with i 0 a i < . We investigate functional central limit theorem for ξ n in the Hölder spaces H ρ o ( ) of functions x : [ 0 , 1 ] such that ||x(t + h) - x(t)|| = o(p(h)) uniformly in t, where p(h) = hαL(1/h), 0 ≤ h ≤ 1 with 0 ≤ α ≤ 1/2 and L slowly varying at infinity. We obtain the H ρ o ( ) weak convergence of ξ n ...

Homogenization of locally stationary diffusions with possibly degenerate diffusion matrix

Rémi Rhodes (2009)

Annales de l'I.H.P. Probabilités et statistiques

This paper deals with homogenization of second order divergence form parabolic operators with locally stationary coefficients. Roughly speaking, locally stationary coefficients have two evolution scales: both an almost constant microscopic one and a smoothly varying macroscopic one. The homogenization procedure aims to give a macroscopic approximation that takes into account the microscopic heterogeneities. This paper follows [Probab. Theory Related Fields (2009)] and improves this latter work by...

Homomorphisms to constructed from random walks

Anna Erschler, Anders Karlsson (2010)

Annales de l’institut Fourier

We give a construction of homomorphisms from a group into the reals using random walks on the group. The construction is an alternative to an earlier construction that works in more general situations. Applications include an estimate on the drift of random walks on groups of subexponential growth admitting no nontrivial homomorphism to the integers and inequalities between the asymptotic drift and the asymptotic entropy. Some of the entropy estimates obtained have applications independent of the...

Horocyclic products of trees

Laurent Bartholdi, Markus Neuhauser, Wolfgang Woess (2008)

Journal of the European Mathematical Society

Let T 1 , , T d be homogeneous trees with degrees q 1 + 1 , , q d + 1 3 , respectively. For each tree, let 𝔥 : T j be the Busemann function with respect to a fixed boundary point (end). Its level sets are the horocycles. The horocyclic product of T 1 , , T d is the graph 𝖣𝖫 ( q 1 , , q d ) consisting of all d -tuples x 1 x d T 1 × × T d with 𝔥 ( x 1 ) + + 𝔥 ( x d ) = 0 , equipped with a natural neighbourhood relation. In the present paper, we explore the geometric, algebraic, analytic and probabilistic properties of these graphs and their isometry groups. If d = 2 and q 1 = q 2 = q then we obtain a Cayley graph of the...

Currently displaying 1 – 17 of 17

Page 1