Displaying 281 – 300 of 1112

Showing per page

Extremal and optimal solutions in the transshipment problem

Viktor Beneš (1992)

Commentationes Mathematicae Universitatis Carolinae

The paper yields an investigation of the set of all finite measures on the product space with given difference of marginals. Extremal points of this set are characterized and constructed. Sets of uniqueness are studied in the relation to marginal problem. In the optimization problem the support of the optimal measure is described for a class of cost functions. In an example the optimal value is reached by an unbounded sequence of measures.

Extremal solutions of a general marginal problem

Petra Linhartová (1991)

Commentationes Mathematicae Universitatis Carolinae

The characterization of extremal points of the set of probability measures with given marginals is given in the general context of a marginal system. The sets of marginal uniqueness are studied and an example is added to illustrate the theory.

Factorization through Hilbert space and the dilation of L(X,Y)-valued measures

V. Mandrekar, P. Richard (1993)

Studia Mathematica

We present a general necessary and sufficient algebraic condition for the spectral dilation of a finitely additive L(X,Y)-valued measure of finite semivariation when X and Y are Banach spaces. Using our condition we derive the main results of Rosenberg, Makagon and Salehi, and Miamee without the assumption that X and/or Y are Hilbert spaces. In addition we relate the dilation problem to the problem of factoring a family of operators through a single Hilbert space.

Currently displaying 281 – 300 of 1112