Convergence of randomly oscillating point patterns to the Poisson point process
Oscillating point patterns are point processes derived from a locally finite set in a finite dimensional space by i.i.d. random oscillation of individual points. An upper and lower bound for the variation distance of the oscillating point pattern from the limit stationary Poisson process is established. As a consequence, the true order of the convergence rate in variation norm for the special case of isotropic Gaussian oscillations applied to the regular cubic net is found. To illustrate these theoretical...