Displaying 21 – 40 of 155

Showing per page

Approximated maximum likelihood estimation of parameters of discrete stable family

Lenka Slámová, Lev B. Klebanov (2014)

Kybernetika

In this article we propose a method of parameters estimation for the class of discrete stable laws. Discrete stable distributions form a discrete analogy to classical stable distributions and share many interesting properties with them such as heavy tails and skewness. Similarly as stable laws discrete stable distributions are defined through characteristic function and do not posses a probability mass function in closed form. This inhibits the use of classical estimation methods such as maximum...

Asymptotic analysis of a class of functional equations and applications

P. J. Grabner, H. Prodinger, R. F. Tichy (1993)

Journal de théorie des nombres de Bordeaux

Flajolet and Richmond have invented a method to solve a large class of divide-and-conquer recursions. The essential part of it is the asymptotic analysis of a certain generating function for z by means of the Mellin transform. In this paper this type of analysis is performed for a reasonably large class of generating functions fulfilling a functional equation with polynomial coefficients. As an application, the average life time of a party of N people is computed, where each person advances one...

Asymptotic behavior of the hitting time, overshoot and undershoot for some Lévy processes

Bernard Roynette, Pierre Vallois, Agnès Volpi (2008)

ESAIM: Probability and Statistics

Let ( X t , t 0 ) be a Lévy process started at 0 , with Lévy measure ν . We consider the first passage time T x of ( X t , t 0 ) to level x > 0 , and K x : = X T x - 𝑥 the overshoot and L x : = x - X T 𝑥 - the undershoot. We first prove that the Laplace transform of the random triple ( T x , K x , L x ) satisfies some kind of integral equation. Second, assuming that ν admits exponential moments, we show that ( T x ˜ , K x , L x ) converges in distribution as x , where T x ˜ denotes a suitable renormalization of T x .

Asymptotic behavior of the hitting time, overshoot and undershoot for some Lévy processes

Bernard Roynette, Pierre Vallois, Agnès Volpi (2007)

ESAIM: Probability and Statistics

Let (Xt, t ≥ 0) be a Lévy process started at 0, with Lévy measure ν. We consider the first passage time Tx of (Xt, t ≥ 0) to level x > 0, and Kx := XTx - x the overshoot and Lx := x- XTx- the undershoot. We first prove that the Laplace transform of the random triple (Tx,Kx,Lx) satisfies some kind of integral equation. Second, assuming that ν admits exponential moments, we show that ( T x ˜ , K x , L x ) converges in distribution as x → ∞, where T x ˜ denotes a suitable renormalization of Tx.


Characterizations of inequality orderings by means of dispersive orderings.

Héctor M. Ramos Romero, Miguel Angel Sordo Díaz (2002)

Qüestiió

The generalized Lorenz order and the absolute Lorenz order are used in economics to compare income distributions in terms of social welfare. In Section 2, we show that these orders are equivalent to two stochastic orders, the concave order and the dilation order, which are used to compare the dispersion of probability distributions. In Section 3, a sufficient condition for the absolute Lorenz order, which is often easy to verify in practice, is presented. This condition is applied in Section 4 to...

Characterizations of the exponential distribution based on certain properties of its characteristic function

Simos G. Meintanis, George Iliopoulos (2003)

Kybernetika

Two characterizations of the exponential distribution among distributions with support the nonnegative real axis are presented. The characterizations are based on certain properties of the characteristic function of the exponential random variable. Counterexamples concerning more general possible versions of the characterizations are given.

Constraints on distributions imposed by properties of linear forms

Denis Belomestny (2010)

ESAIM: Probability and Statistics

Let (X1,Y1),...,(Xm,Ym) be m independent identically distributed bivariate vectors and L1 = β1X1 + ... + βmXm, L2 = β1X1 + ... + βmXm are two linear forms with positive coefficients. We study two problems: under what conditions does the equidistribution of L1 and L2 imply the same property for X1 and Y1, and under what conditions does the independence of L1 and L2 entail independence of X1 and Y1? Some analytical sufficient conditions are obtained and it is shown that in general they can not be...

Constraints on distributions imposed by properties of linear forms

Denis Belomestny (2003)

ESAIM: Probability and Statistics

Let ( X 1 , Y 1 ) , ... , ( X m , Y m ) be m independent identically distributed bivariate vectors and L 1 = β 1 X 1 + ... + β m X m , L 2 = β 1 Y 1 + ... + β m Y m are two linear forms with positive coefficients. We study two problems: under what conditions does the equidistribution of L 1 and L 2 imply the same property for X 1 and Y 1 , and under what conditions does the independence of L 1 and L 2 entail independence of X 1 and Y 1 ? Some analytical sufficient conditions are obtained and it is shown that in general they can not be weakened.

Currently displaying 21 – 40 of 155