Long memory and self-similar processes
This paper is a survey of both classical and new results and ideas on long memory, scaling and self-similarity, both in the light-tailed and heavy-tailed cases.
This paper is a survey of both classical and new results and ideas on long memory, scaling and self-similarity, both in the light-tailed and heavy-tailed cases.
Let be a family of Hölder continuous functions and let be a conformal iterated function system. Lindsay and Mauldin’s paper [Nonlinearity 15 (2002)] left an open question whether the lower quantization coefficient for the F-conformal measure on a conformal iterated funcion system satisfying the open set condition is positive. This question was positively answered by Zhu. The goal of this paper is to present a different proof of this result.
Let , , where the are independent random vectors, each uniformly distributed on the unit sphere in ℝⁿ, and are real constants. We prove that if is majorized by in the sense of Hardy-Littlewood-Pólya, and if Φ: ℝⁿ → ℝ is continuous and bisubharmonic, then EΦ(X) ≤ EΦ(Y). Consequences include most of the known sharp Khinchin inequalities for sums of the form X. For radial Φ, bisubharmonicity is necessary as well as sufficient for the majorization inequality to always hold. Counterparts...
In the framework of models generated by compositional expressions, we solve two topical marginalization problems (namely, the single-marginal problem and the marginal-representation problem) that were solved only for the special class of the so-called “canonical expressions”. We also show that the two problems can be solved “from scratch” with preliminary symbolic computation.
Efficient computational algorithms are what made graphical Markov models so popular and successful. Similar algorithms can also be developed for computation with compositional models, which form an alternative to graphical Markov models. In this paper we present a theoretical basis as well as a scheme of an algorithm enabling computation of marginals for multidimensional distributions represented in the form of compositional models.
We extend the definition of Markov operator in the sense of J. R. Brown and of earlier work of the authors to a setting appropriate to the study of n-copulas. Basic properties of this extension are studied.
The Markov-Krein transform maps a positive measure on the real line to a probability measure. It is implicitly defined through an identity linking two holomorphic functions. In this paper an explicit formula is given. Its proof is obtained by considering boundary values of holomorhic functions. This transform appears in several classical questions in analysis and probability theory: Markov moment problem, Dirichlet distributions and processes, orbital measures. An asymptotic property for this transform...
A characterization of the transport property is given. New properties for strongly nonatomic probabilities are established. We study the relationship between the nondifferentiability of a real function f and the fact that the probability measure , where f*(x):=(x,f(x)) and λ is the Lebesgue measure, has the transport property.
In this paper, we deal with second-order stochastic dominance (SSD) portfolio efficiency with respect to all portfolios that can be created from a considered set of assets. Assuming scenario approach for distribution of returns several SSD portfolio efficiency tests were proposed. We introduce a -SSD portfolio efficiency approach and we analyze the stability of SSD portfolio efficiency and -SSD portfolio efficiency classification with respect to changes in scenarios of returns. We propose new...
In this paper, we will discuss the meshless polyharmonic reconstruction of vector fields from scattered data, possibly, contaminated by noise. We give an explicit solution of the problem. After some theoretical framework, we discuss some numerical aspect arising in the problems related to the reconstruction of vector fields
We consider a dynamical system in driven by a vector field -U', where U is a multi-well potential satisfying some regularity conditions. We perturb this dynamical system by a Lévy noise of small intensity and such that the heaviest tail of its Lévy measure is regularly varying. We show that the perturbed dynamical system exhibits metastable behaviour i.e. on a proper time scale it reminds of a Markov jump process taking values in the local minima of the potential U. Due to the heavy-tail nature...
Metrics are proposed for the distance between two multivariate stable distributions. The first set of metrics are defined in terms of the closeness of the parameter functions of one dimensional projections of the laws. Convergence in these metrics is equivalent to convergence in distribution and an explicit bound on the uniform closeness of two stable densities is given. Another metric based on the Prokhorov metric between the spectral measures is related to the first metric. Consequences for approximation,...
A misclassified size-biased modified power series distribution (MSBMPSD) where some of the observations corresponding to are misclassified as with probability , is defined. We obtain its recurrence relations among ordinary, central and factorial moments and also for some of its particular cases like the size-biased generalized negative binomial (SBGNB) and the size-biased generalized Poisson (SBGP) distributions. We also discuss the effect of the misclassification on the variance for MSBMPSD...