Previous Page 3

Displaying 41 – 51 of 51

Showing per page

Extension of stochastic dominance theory to random variables

Chi-Kwong Li, Wing-Keung Wong (2010)

RAIRO - Operations Research

In this paper, we develop some stochastic dominance theorems for the location and scale family and linear combinations of random variables and for risk lovers as well as risk averters that extend results in Hadar and Russell (1971) and Tesfatsion (1976). The results are discussed and applied to decision-making.

Extension to copulas and quasi-copulas as special 1 -Lipschitz aggregation operators

Erich Peter Klement, Anna Kolesárová (2005)

Kybernetika

Smallest and greatest 1 -Lipschitz aggregation operators with given diagonal section, opposite diagonal section, and with graphs passing through a single point of the unit cube, respectively, are determined. These results are used to find smallest and greatest copulas and quasi-copulas with these properties (provided they exist).

Extreme distribution functions of copulas

Manuel Úbeda-Flores (2008)

Kybernetika

In this paper we study some properties of the distribution function of the random variable C(X,Y) when the copula of the random pair (X,Y) is M (respectively, W) – the copula for which each of X and Y is almost surely an increasing (respectively, decreasing) function of the other –, and C is any copula. We also study the distribution functions of M(X,Y) and W(X,Y) given that the joint distribution function of the random variables X and Y is any copula.

Currently displaying 41 – 51 of 51

Previous Page 3