Adaptive goodness-of-fit testing from indirect observations
In a convolution model, we observe random variables whose distribution is the convolution of some unknown density f and some known noise density g. We assume that g is polynomially smooth. We provide goodness-of-fit testing procedures for the test H0: f=f0, where the alternative H1is expressed with respect to -norm (i.e. has the form ). Our procedure is adaptive with respect to the unknown smoothness parameterτ of f. Different testing rates (ψn) are obtained according to whether f0 is polynomially...