Displaying 141 – 160 of 174

Showing per page

An isoperimetric inequality on the ℓp balls

Sasha Sodin (2008)

Annales de l'I.H.P. Probabilités et statistiques

The normalised volume measure on the ℓnp unit ball (1≤p≤2) satisfies the following isoperimetric inequality: the boundary measure of a set of measure a is at least cn1/pãlog1−1/p(1/ã), where ã=min(a, 1−a).

Angles de droits et de revers. Distribution circulaire

C. Carcassonne (1974)

Mathématiques et Sciences Humaines

Dans cet article, on traite un échantillon d'angles de droits et de revers de pièces de monnaies. On a cherché à en donner une description statistique correcte et à ajuster une loi théorique puis à construire un test d'homogénéité non paramétrique de deux échantillons distribués sur le cercle.

Application des lois non paramétriques dans les systèmes d’attente et la théorie de renouvellement

Smail Adjabi, Karima Lagha, Amar Aïssani (2004)

RAIRO - Operations Research - Recherche Opérationnelle

Les distributions non paramétriques de survie trouvent, de plus en plus, des applications dans des domaines très variés, à savoir : théorie de fiabilité et analyse de survie, files d’attente, maintenance, gestion de stock, théorie de l’économie, ... L’objet de ce travail est d’utiliser les bornes inférieures et supérieures (en terme de la moyenne) des fonctions de fiabilité appartenant aux classes de distribution de type I F R , D F R , N B U et N W U , présentées par Sengupta (1994), pour l’évaluation de certaines caractéristiques....

Application des lois non paramétriques dans les systèmes d'attente et la théorie de renouvellement

Smail Adjabi, Karima Lagha, Amar Aïssani (2010)

RAIRO - Operations Research

Les distributions non paramétriques de survie trouvent, de plus en plus, des applications dans des domaines très variés, à savoir: théorie de fiabilité et analyse de survie, files d'attente, maintenance, gestion de stock, théorie de l'économie, ... L'objet de ce travail est d'utiliser les bornes inférieures et supérieures (en terme de la moyenne) des fonctions de fiabilité appartenant aux classes de distribution de type IFR, DFR, NBU et NWU, présentées par Sengupta (1994), pour l'évaluation de...

Approximated maximum likelihood estimation of parameters of discrete stable family

Lenka Slámová, Lev B. Klebanov (2014)

Kybernetika

In this article we propose a method of parameters estimation for the class of discrete stable laws. Discrete stable distributions form a discrete analogy to classical stable distributions and share many interesting properties with them such as heavy tails and skewness. Similarly as stable laws discrete stable distributions are defined through characteristic function and do not posses a probability mass function in closed form. This inhibits the use of classical estimation methods such as maximum...

Approximation of finite-dimensional distributions for integrals driven by α-stable Lévy motion

Aleksander Janicki (1999)

Applicationes Mathematicae

We present a method of numerical approximation for stochastic integrals involving α-stable Lévy motion as an integrator. Constructions of approximate sums are based on the Poissonian series representation of such random measures. The main result gives an estimate of the rate of convergence of finite-dimensional distributions of finite sums approximating such stochastic integrals. Stochastic integrals driven by such measures are of interest in constructions of models for various problems arising...

Approximation of stochastic differential equations driven by α-stable Lévy motion

Aleksander Janicki, Zbigniew Michna, Aleksander Weron (1997)

Applicationes Mathematicae

In this paper we present a result on convergence of approximate solutions of stochastic differential equations involving integrals with respect to α-stable Lévy motion. We prove an appropriate weak limit theorem, which does not follow from known results on stability properties of stochastic differential equations driven by semimartingales. It assures convergence in law in the Skorokhod topology of sequences of approximate solutions and justifies discrete time schemes applied in computer simulations....

Are law-invariant risk functions concave on distributions?

Beatrice Acciaio, Gregor Svindland (2013)

Dependence Modeling

While it is reasonable to assume that convex combinations on the level of random variables lead to a reduction of risk (diversification effect), this is no more true on the level of distributions. In the latter case, taking convex combinations corresponds to adding a risk factor. Hence, whereas asking for convexity of risk functions defined on random variables makes sense, convexity is not a good property to require on risk functions defined on distributions. In this paper we study the interplay...

Currently displaying 141 – 160 of 174