Previous Page 9

Displaying 161 – 174 of 174

Showing per page

Asymmetric semilinear copulas

Bernard De Baets, Hans De Meyer, Radko Mesiar (2007)

Kybernetika

We complement the recently introduced classes of lower and upper semilinear copulas by two new classes, called vertical and horizontal semilinear copulas, and characterize the corresponding class of diagonals. The new copulas are in essence asymmetric, with maximum asymmetry given by 1 / 16 . The only symmetric members turn out to be also lower and upper semilinear copulas, namely convex sums of Π and M .

Asymptotic analysis of a class of functional equations and applications

P. J. Grabner, H. Prodinger, R. F. Tichy (1993)

Journal de théorie des nombres de Bordeaux

Flajolet and Richmond have invented a method to solve a large class of divide-and-conquer recursions. The essential part of it is the asymptotic analysis of a certain generating function for z by means of the Mellin transform. In this paper this type of analysis is performed for a reasonably large class of generating functions fulfilling a functional equation with polynomial coefficients. As an application, the average life time of a party of N people is computed, where each person advances one...

Asymptotic behavior of the hitting time, overshoot and undershoot for some Lévy processes

Bernard Roynette, Pierre Vallois, Agnès Volpi (2008)

ESAIM: Probability and Statistics

Let ( X t , t 0 ) be a Lévy process started at 0 , with Lévy measure ν . We consider the first passage time T x of ( X t , t 0 ) to level x > 0 , and K x : = X T x - 𝑥 the overshoot and L x : = x - X T 𝑥 - the undershoot. We first prove that the Laplace transform of the random triple ( T x , K x , L x ) satisfies some kind of integral equation. Second, assuming that ν admits exponential moments, we show that ( T x ˜ , K x , L x ) converges in distribution as x , where T x ˜ denotes a suitable renormalization of T x .

Asymptotic behavior of the hitting time, overshoot and undershoot for some Lévy processes

Bernard Roynette, Pierre Vallois, Agnès Volpi (2007)

ESAIM: Probability and Statistics

Let (Xt, t ≥ 0) be a Lévy process started at 0, with Lévy measure ν. We consider the first passage time Tx of (Xt, t ≥ 0) to level x > 0, and Kx := XTx - x the overshoot and Lx := x- XTx- the undershoot. We first prove that the Laplace transform of the random triple (Tx,Kx,Lx) satisfies some kind of integral equation. Second, assuming that ν admits exponential moments, we show that ( T x ˜ , K x , L x ) converges in distribution as x → ∞, where T x ˜ denotes a suitable renormalization of Tx.


Asymptotic behaviour of stochastic systems with conditionally exponential decay property

Agnieszka Jurlewicz, Aleksander Weron, Karina Weron (1996)

Applicationes Mathematicae

A new class of CED systems, providing insight into behaviour of physical disordered materials, is introduced. It includes systems in which the conditionally exponential decay property can be attached to each entity. A limit theorem for the normalized minimum of a CED system is proved. Employing different stable schemes the universal characteristics of the behaviour of such systems are derived.

Asymptotically optimal quantization schemes for Gaussian processes on Hilbert spaces*

Harald Luschgy, Gilles Pagès, Benedikt Wilbertz (2010)

ESAIM: Probability and Statistics

We describe quantization designs which lead to asymptotically and order optimal functional quantizers for Gaussian processes in a Hilbert space setting. Regular variation of the eigenvalues of the covariance operator plays a crucial role to achieve these rates. For the development of a constructive quantization scheme we rely on the knowledge of the eigenvectors of the covariance operator in order to transform the problem into a finite dimensional quantization problem of normal distributions. ...

Currently displaying 161 – 174 of 174

Previous Page 9